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What is the Internet Computer



Platform to run any computation using 
blockchain technology for 

decentralisation and security



• Create Internet Computer 
blockchains.

• Ensures machines agree on 
sequence of computations 
carried out

Internet Computer
Public cyberspace

IP / Internet

Data Centers

ICP protocol

Coordination of
independent datacenters,  
jointly performing any 
computation for anyone

ICP | Internet Computer Protocol



Canister smart contracts are fast, run in parallel, and scale…

Canister 
smart contract

Data: Memory pages

Code: WebAssembly 
bytecode



Developers build dapps by uploading canisters to the IC.  
No cloud computing necessary
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Launched May 2021. Growing more powerful daily…

https://dashboard.internetcomputer.org/



Fast growing blockchain ecosystem  
Over 1,000 developers now building



Comparison with other Blockchain Systems

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/ 

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/


Internet Computer Architecture



Nodes are partitioned into subnets.

Canister smart contracts are assigned to different 
subnets.

The Internet Computer is powered by a myriad of nodes



Nodes are partitioned into subnets.

Canister smart contracts are assigned to different 
subnets.

One subnet is special: it host the NNS canisters -  
the Network Nervous System that governs the IC

ICP token holders vote on
• Creation of new subnets
• Upgrades to new protocol version
• Replacement of nodes
• …

The Internet Computer is powered by a myriad of nodes



State: 
• canisters and their queues

Inputs: 
• new canisters to be installed, 
• messages from users and other canisters

Outputs:
• responses to users and other canisters

Transition function:
• message routing and scheduling
• canister code

Each subnet is a replicated state machine



The layers  of  the Internet  Computer  Protocol

P2P

Message Routing

Consensus

Execution Environment } Deterministic computation

} Message acquisition and ordering



The layers  of  the Internet  Computer  Protocol

State

Blocks

P2P

Message Routing

Consensus

Execution 

D

U

E



State tree
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state@5000
canisters

system metadata

canister 1
input queues
output queues
memory0

0xcf624a15dbf7f70…
0x13d7232f4e05100…
…

canister 2
…

ingress history
streams state

• Huge piece of tree-structured data. 

• Size: up to several GiB per canister, 100s GiBs total. 

• 64KiB memory pages for efficient storage on disk



Honest replicas can fall behind

• Temporary network outage

• Power cycle

• Reboot after maintenance

• …


How do they catch up with  
the rest?

Fault-tolerance in a subnet



State Synchronization



Requirements

• Cope with Byzantine parties 
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Requirements
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• Cope with Byzantine parties 

• Bounded Memory and disk space 
 



Requirements
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• Cope with Byzantine parties 

• Bounded Memory and disk space 
 

• Minimize bandwidth and computation complexity



Catching Up



What  a  node needs to  fu l ly  part ic ipate  in  the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how 

Queue state: to schedule and route messages



NNS generates key of subnets 
and certifies them.

Chain Key Cryptography: Key management



P2P Resumabi l i ty 26

NNS subnet

Some 
subnet

Some other 
subnet

Subnet 
query

?

Resuming 
node

Resuming node v

• v is initialized with NNS public key

• Can verify NNS responses

• Repeatedly NNS subnet membership

• Determine other nodes in v’s subnet and 

subnet key 

Basic premise: only connect to subnet overlay neighbors, at any time 
(to mitigate DOS attacks)



What  a  node needs to  fu l ly  part ic ipate  in  the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how 

Queue state: to schedule and route messages



Consensus Resumabi l i ty

• Easy case: missing information still available from peers 
 
 
 
 
 
 
 
 
just fetch missing messages, construct blocks and execute the messages contained in them
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• More difficult case: peers have purged missing information 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24 25 26 27 28 29

24 25

Replica A

Replica B

Consensus Resumabi l i ty



Checkpoint ing

State

Blocks

Checkpoints

P2P

Message Routing

Consensus

Execution 



• More difficult case: peers have purged missing information 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24 25 26 27 28 29

24 25

Replica A

Replica B

Consensus Resumabi l i ty

Catch-up package (CUP) containing 
• Key material 
• Consensus information 
• Hash of checkpoint 

Signed with subnet key 



What  a  node needs to  fu l ly  part ic ipate  in  the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how 

Queue state: to schedule and route messages



Chunking
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Secur i ty  Problem: Del ivery  Tamper ing Attacks

The problem with large artifacts 
• need long download timeout 

e.g., 8 MB artifact over 1Gbps connection shared by 30 nodes in rack, 25 peers per node 
= 47s expected download time  timeout > 1m30s


• can be exploited by bad peer to prevent (timely) delivery


E.g., bad peer can block statesync by

• being first peer to advertize it (skipping checks)

• send bogus data until download times out

• repeat with other bad peers until lower-ranked block finalized

→

CORRECT 
NODE

Advertise large artifact
Request artifact

Send very slowly, or send bogus data
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Solut ion: Chunking

✂ ✂

Solution: split up in smaller chunks that can be 
• requested separately

• downloaded in parallel


Advantages: 
• shorter download timeouts  

 fail earlier

• parallelize download from multiple peers 

 lower latency 
 better bandwidth utilisation

→

→
→



Tree structure of state
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Up-to-date replica Catching-up replica

state@5000
canisters

system metadata

canister 1
input queues
output queues
memory0

0xcf624a15dbf7f70…
0x13d7232f4e05100…
…

canister 2
…

ingress history
streams state

state@4000
canisters

system metadata

canister 1
input queues 
output queues
memory0

0x2cd76eb1f594551…
0x13d7232f4e05100…
…

ingress history
streams state



Design Overview
Announce state as one big artifact, use tree structure to request chunks 

• Chunking mechanism 

• first request manifest with leaf/subtree hashes 

• then determine chunks to fetch (as opposed to always fetching all chunks)
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Up-to-date replica Catching-up replica

…
…

advert

request manifest

manifest
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Design Overview
Announce state as one big artifact, use tree structure to request chunks 

• Chunking mechanism 

• first request manifest with leaf/subtree hashes 

• then determine chunks to fetch (as opposed to always fetching all chunks) 

• Natural, efficient diff and de-duplication  
e.g., empty (all-zero) page transmitted at most once
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Up-to-date replica Catching-up replica

…
…

advert

request manifest

…

manifest

request missing chunks

Diff

………



Summary
The Internet computer can 

• Run canister smart contracts 

• Serve requests at web speed 

• Despite byzantine nodes 

In particular, nodes can catch up quickly thanks to 

• One public key per subnet, certified by NNS 

• Catch Up Package containing a block with key info and checkpoint hash 

• Chunking mechanism 

• first request manifest with leaf/subtree hashes 

• then determine chunks to fetch (as opposed to always fetching all chunks) from any peer
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