
Catching up on the Internet Computer

Yvonne-Anne Pignolet
Senior Research Manager, DFINITY Foundation

May 2022

We are hiring!

www.dfinity.org/careers

https://twitter.com/dominic_w

What is the Internet Computer

Platform to run any computation using
blockchain technology for

decentralisation and security

• Create Internet Computer
blockchains.

• Ensures machines agree on
sequence of computations
carried out

Internet Computer
Public cyberspace

IP / Internet

Data Centers

ICP protocol

Coordination of
independent datacenters,  
jointly performing any
computation for anyone

ICP | Internet Computer Protocol

Canister smart contracts are fast, run in parallel, and scale…

Canister 
smart contract

Data: Memory pages

Code: WebAssembly 
bytecode

Developers build dapps by uploading canisters to the IC.  
No cloud computing necessary

Developer

DEPLOY

Internet Computer

UX

Public cyberspace

End user

Developers build dapps by uploading canisters to the IC.  
No cloud computing necessary

Developer

DEPLOY

Internet Computer

UX

Public cyberspace

End user

Launched May 2021. Growing more powerful daily…

https://dashboard.internetcomputer.org/

Fast growing blockchain ecosystem  
Over 1,000 developers now building

Comparison with other Blockchain Systems

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

Internet Computer Architecture

Nodes are partitioned into subnets.

Canister smart contracts are assigned to different
subnets.

The Internet Computer is powered by a myriad of nodes

Nodes are partitioned into subnets.

Canister smart contracts are assigned to different
subnets.

One subnet is special: it host the NNS canisters -  
the Network Nervous System that governs the IC

ICP token holders vote on
• Creation of new subnets
• Upgrades to new protocol version
• Replacement of nodes
• …

The Internet Computer is powered by a myriad of nodes

State:
• canisters and their queues

Inputs:
• new canisters to be installed,
• messages from users and other canisters

Outputs:
• responses to users and other canisters

Transition function:
• message routing and scheduling
• canister code

Each subnet is a replicated state machine

The layers of the Internet Computer Protocol

P2P

Message Routing

Consensus

Execution Environment } Deterministic computation

} Message acquisition and ordering

The layers of the Internet Computer Protocol

State

Blocks

P2P

Message Routing

Consensus

Execution

D

U

E

State tree

17

state@5000
canisters

system metadata

canister 1
input queues
output queues
memory0

0xcf624a15dbf7f70…
0x13d7232f4e05100…
…

canister 2
…

ingress history
streams state

• Huge piece of tree-structured data.

• Size: up to several GiB per canister, 100s GiBs total.

• 64KiB memory pages for efficient storage on disk

Honest replicas can fall behind

• Temporary network outage

• Power cycle

• Reboot after maintenance

• …

How do they catch up with  
the rest?

Fault-tolerance in a subnet

State Synchronization

Requirements

• Cope with Byzantine parties

20

Requirements

21

• Cope with Byzantine parties

• Bounded Memory and disk space

Requirements

22

• Cope with Byzantine parties

• Bounded Memory and disk space

• Minimize bandwidth and computation complexity

Catching Up

What a node needs to fu l ly part ic ipate in the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how

Queue state: to schedule and route messages

NNS generates key of subnets 
and certifies them.

Chain Key Cryptography: Key management

P2P Resumabi l i ty 26

NNS subnet

Some
subnet

Some other
subnet

Subnet
query

?

Resuming
node

Resuming node v

• v is initialized with NNS public key

• Can verify NNS responses

• Repeatedly NNS subnet membership

• Determine other nodes in v’s subnet and

subnet key

Basic premise: only connect to subnet overlay neighbors, at any time
(to mitigate DOS attacks)

What a node needs to fu l ly part ic ipate in the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how

Queue state: to schedule and route messages

Consensus Resumabi l i ty

• Easy case: missing information still available from peers 
 
 
 
 
 
 
 
 
just fetch missing messages, construct blocks and execute the messages contained in them

28

24 25 26 27 28 29

24 25

Replica A

Replica B

• More difficult case: peers have purged missing information 
 
 
 
 
 
 
 
 

29

24 25 26 27 28 29

24 25

Replica A

Replica B

Consensus Resumabi l i ty

Checkpoint ing

State

Blocks

Checkpoints

P2P

Message Routing

Consensus

Execution

• More difficult case: peers have purged missing information 
 
 
 
 
 
 
 
 

31

24 25 26 27 28 29

24 25

Replica A

Replica B

Consensus Resumabi l i ty

Catch-up package (CUP) containing
• Key material
• Consensus information
• Hash of checkpoint

Signed with subnet key

What a node needs to fu l ly part ic ipate in the protocol

P2P

Message Routing

Consensus

Execution Environment Canister state: to process messages

Key material: to sign and verify messages

Peers info: who to connect to and how

Queue state: to schedule and route messages

Chunking

34

Secur i ty Problem: Del ivery Tamper ing Attacks

The problem with large artifacts
• need long download timeout 

e.g., 8 MB artifact over 1Gbps connection shared by 30 nodes in rack, 25 peers per node 
= 47s expected download time timeout > 1m30s

• can be exploited by bad peer to prevent (timely) delivery

E.g., bad peer can block statesync by

• being first peer to advertize it (skipping checks)

• send bogus data until download times out

• repeat with other bad peers until lower-ranked block finalized

→

CORRECT
NODE

Advertise large artifact
Request artifact

Send very slowly, or send bogus data

35

Solut ion: Chunking

✂ ✂

Solution: split up in smaller chunks that can be
• requested separately

• downloaded in parallel

Advantages:
• shorter download timeouts  

 fail earlier

• parallelize download from multiple peers 

 lower latency 
 better bandwidth utilisation

→

→
→

Tree structure of state

36

Up-to-date replica Catching-up replica

state@5000
canisters

system metadata

canister 1
input queues
output queues
memory0

0xcf624a15dbf7f70…
0x13d7232f4e05100…
…

canister 2
…

ingress history
streams state

state@4000
canisters

system metadata

canister 1
input queues
output queues
memory0

0x2cd76eb1f594551…
0x13d7232f4e05100…
…

ingress history
streams state

Design Overview
Announce state as one big artifact, use tree structure to request chunks

• Chunking mechanism

• first request manifest with leaf/subtree hashes

• then determine chunks to fetch (as opposed to always fetching all chunks)

37

Up-to-date replica Catching-up replica

…
…

advert

request manifest

manifest

Design Overview
Announce state as one big artifact, use tree structure to request chunks

• Chunking mechanism

• first request manifest with leaf/subtree hashes

• then determine chunks to fetch (as opposed to always fetching all chunks)

38

Up-to-date replica Catching-up replica

…
…

advert

request manifest

manifest
Diff

………

Design Overview
Announce state as one big artifact, use tree structure to request chunks

• Chunking mechanism

• first request manifest with leaf/subtree hashes

• then determine chunks to fetch (as opposed to always fetching all chunks)

39

Up-to-date replica Catching-up replica

…
…

advert

request manifest

…

manifest

request missing chunks

Diff

………

Design Overview
Announce state as one big artifact, use tree structure to request chunks

• Chunking mechanism

• first request manifest with leaf/subtree hashes

• then determine chunks to fetch (as opposed to always fetching all chunks)

• Natural, efficient diff and de-duplication
e.g., empty (all-zero) page transmitted at most once

40

Up-to-date replica Catching-up replica

…
…

advert

request manifest

…

manifest

request missing chunks

Diff

………

Summary
The Internet computer can

• Run canister smart contracts

• Serve requests at web speed

• Despite byzantine nodes

In particular, nodes can catch up quickly thanks to

• One public key per subnet, certified by NNS

• Catch Up Package containing a block with key info and checkpoint hash

• Chunking mechanism

• first request manifest with leaf/subtree hashes

• then determine chunks to fetch (as opposed to always fetching all chunks) from any peer

41

A = || || || ||…

yvonneanne@dfinity.org

mailto:yvonneanne@dfinity.org

