o0

DFINITY

The Internet Computer for
Systems Researchers

ot
e e

Stefan Kaestle N 7//
Ulan Degenbaev, Adam Bratschi- Kfme Andynyﬁ\gﬁestovskyy

s \\
June 2022 We are hiring: dfinity.org/careers

What is the IC?
Interesting Systems problems

Numbers

Q&A

CO

DFINITY

What is the Internet Computer?

What is the Internet Computer?

Vision:
Platform to run any ¢ mputatio
in a decentralized and secyre %ner

What’s different about the Internet Computer

e Byzantine fault tolerance
o Up to f out of 3f + 1 malicious nodes
o Individual nodes cannot be trusted

Internet Computer

e Geo replicated
IP / Internet
e Decentralized reme
o DFINITY cannot access most nodes
Data Centers
e Self governing
o No single person in control of the IC L L
o Votes to apply changes R R lo'e

DFINITY

Canister Smart Contracts

Data: Memory pages

Code: WebAssembly bytecode

IIIIIII

Users interact directly with Canisters: raw calls

Internet Computer

Public cyberspace
(rlw): ~2s

CO

DFINITY

Developers and users interact directly with Canisters

Internet Computer

Example apps Public cyberspace

Discover

CO

DFINITY

https://dfinity.org/showcase/
https://dscvr.one/

State Machine Replication (SMR)

Nodes must have same state

1. State on all nodes is identical
2. Deterministic state transitions
3. Ordered input

— State still the same after executing inputs

IC state:

e Canister code, data and queues
e System state

DFINITY

Scalability: Nodes and Subnets

Nodes are partitioned into subnets
Each subnet runs instance of SMR
Each subnet hosts a subnet of canisters

Communication across subnets
possible

DFINITY

ICP Layers

@ Execution Environment

> Deterministic computation

Message Routing

J
\
Q Consensus
> Message acquisition and ordering
o%’f Networking
J

CO

DFINITY

Execution Environment

Hello World example app

#| query]
fn greet(name:

}

format!("Hello

e (Canister code: wasm
o Official support: Rust and Motoko

e |Install: get canister ID

e (Call via canister ID

o Raw calls
o HTTP calls

CO

DFINITY

App with state: Orthogonal persistence

m lllusion: programs run forever

m Program state (incl. heap) is persisted/restored automatically

DFINITY Confidential: For Internal Use Only DFINITY

App with state: Orthogonal persistence

State::default());

#[derive(Default)

pub struct State

Note:
Programming is significantly simpler in

Sampel Defi Motoko

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

App with state: Orthogonal persistence

#[query(name = "getBalance")]
#|candid method(query, rename = "getBalanc:
pub fn get balance(token canister 1id: Principal) -> Nat {

with(]|s]| s.borrow().excﬁange.get_balance(token_canister_id))

}

Sampel Defi

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

App with state: Orthogonal persistence

#[update]

#[candid _method(update)]

pub async fn deposit(token _canister_id: Principal) -> DepositReceipt
let caller = caller();

with(]|s| {
s.borrow _mut()
.exchange
.balances
.add_balance(&caller, &token canister_id, amount.to owned())

Receipt: :0k(amount)

Sampel Defi

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

Orthogonal persistence: Track changes + accounting

Challenge: Need to track changes to memory
Current solution (simplified): Map memory pages on demand
Example: Canister call

1. Initially: no page is mapped

2. Read access: page fault — map r/o, increase read counter

3. Write access: page fault — (re-)map r/w, increase write counter + remember page
a. Query call: throw away dirty pages

b. Update call: store changes in heap delta

Note: 95% of message executions change at most seven memory pages.

DFINITY Confidential: For Internal Use Only

DFINITY

Orthogonal persistence: Performance

Naive solution quite slow.

e Can speculatively map multiple consecutive pages: — trade accuracy for speed
o diff on speculatively mapped r/w pages
e Map r/w for query calls (we throw changes away anyway)

Future: might explore modifying the wasm runtime to compile in profiling instructions

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

Canister
7oy >

Canister
B >

> Time

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

New block with new
messages starts to be
processed

Round R

Canister
7oy >

Canister
B >

> Time

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

Round R Round Round
R+1 R+2
Canister Canister
oy P e yiy >
Canister Canister

Canister A might suffer from Canister B

DFINITY Confidential: For Internal Use Only

* Time

DFINITY

Multiple concurrent canister executions

e Want block ~1s — Execution has to process messages in ~1s

Round R Round Round
R+1 R+2
Canister Canister
oy P e yiy >
a)
Canister Canister

> Time

e Limit number of instructions per message
a. But: Some messages take longer
m E.g. canister upgrade, with expensive pre- and post-hooks
m Garbage collection

DFINITY Confidential: For Internal Use Only

DFINITY

Scheduling: time slicing

Round R

Round Round Round
R#1 Rk-2 R$3
Canister Canister
A A >
Canister Canister Canister
b . . b > """ b >

e Has to be deterministic
Load balancing etc. gets harder

a.

e Reservations (compute allocations)
e (Good resource usage
Fill with best-effort, fairness
e Intermediate state must not be observable

Atomicity: Roll-back on error + Isolation

a.

a.

DFINITY Confidential: For Internal Use Only

DFINITY

Time slicing and checkpointing

e Checkpoint to disk every 500 rounds (~500s, ~8min)
e Contains all state required to resume computation

e Partially executed messages at checkpoint?
a. Nodes have be able to resume from checkpoints
b. What to do with incomplete message executions?

DFINITY Confidential: For Internal Use Only DFINITY

Scheduling & time slicing

e Quite challenging
e Still ongoing discussion

e Come talk to us if you are interested in working on things like this

DFINITY Confidential: For Internal Use Only DFINITY

The IC in Current Numbers

Network Laver:

e 477 nodes

o From 54 node providers
e 33 subnets

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Application Layer:

e /5K+ canisters
e > 2 Mio registered identities (~users)
e ~1.1TB total state (and counting...)

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Consensus

e 850M+ blocks created
e ~34 blocks per second
e -~3500 messages per second

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

Energy use of the IC

e Blockchains have a bad reputation
o Mostly due to proof of work

e \We don’t do that

e \We have random beacon and threshold cryptography
o Single public key that can be used to verify responses from IC
o Can throw away old state (don’t need to maintain forever)

CO

DFINITY

Threshold Cryptography in a nutshell

(@) APX) (b) ‘AP(x)
\
\
\
3 I
; I
o 1
\ Sl M I
\ 7 \ !
\‘ = // \\ !
/’ N !
\ 4 \
B N 7 \)
Qi N >’ i
/' P ok S !
/ \ 7 \ ‘\\ \’
/ Ny =gt \ s 1]
»x P y T \\ \,I E~\.x
0/0 | 40{7 0/" \\ 006
7L / 2 /2 IV
G ! (SR (O / (SN
(74 ' 7 \) \\ ’ \ (¥4
7 \
] N \
I
DFINITY

Shamir’s polynomial of degree 4

https://www.researchgate.net/figure/Shamirs-polynomial-4-n-threshold-secret-sharing-scheme-a-Four-players-can_fig38_43493291

Energy use of the IC

Peak power consumption of node machines: 700W

e Power usage effectiveness (PUE): 2.33 (extremely conservative)
o A PUE of 1: all power is spent on compute
o A PUE of 2: as much power for cooling etc as for compute
o 2.33is quite conservative (e.g. Google closer to 1.1)

e With PUE: 1631W per IC node

e Number of machines: 518 + 11 boundary nodes (as of weekend)
e Total max power consumption of all nodes: ~863kW

e ~3300 transactions / s — 261.45 Ws per transaction = 261.45 Joule
e Conservatice: hardware currently is underutilized

OCC

DFINITY

Energy use of the IC

e ~3300 transactions / s — 261.45 Ws per transaction = 261.45 Joule
e Conservatice: hardware currently is underutilized

Solana Enerqgy Usage Report

Activity

A single Google Search

Keeping an LED light bulb on for one hour 2

Using a fully-charged iPhone 13 on battery 3

Working for an hour with a computer and monitor 4

One eth2 transaction ®

Watching an hour of television on a 40 inch+ LCD
Tv4

Playing one hour of a PlayStation 5 game ©

Running a refrigerator for one hour 4

One hour of central air conditioning *

Using one gallon of gasoline ”

One Ethereum transaction &

One Bitcoin transaction ©

Energy Used, in
Joules (J)

1,080J

36,000 J

44,676 J

46,800 J

126,000 J

540,000 J

708,840 J

810,000 J

12,600,000 J

121,320,000 J

692,820,000 J

6,995,592,000 J

https://solana.com/news/solana-energy-usage-report-november-2021

DFINITY
Questions? Reach
stefan.kaestle@dfinity.

uIan.deeLe%aev@dﬂnit\gc? /ﬁ\
am bratschikaye@dfinityorg _ (© >

NI

(/\ AWe are hiring: dfinity.org/c regs/
/\ g /’// k

mailto:stefan.kaestle@dfinity.org
mailto:ulan.degenbaev@dfinity.org
mailto:adam.bratschikaye@dfinity.org

BACKUP

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are assigned
to different subnets

One subnet is special: it host the
Network Nervous System (NNS)
canisters which govern the IC

ICP token holders vote on

Creation of new subnets
Upgrades to new protocol version
Replacement of nodes

DFINITY

Research on the IC

Open Research Problems

Intra-subnet communications scalability (growing size of subnets)
Inter-subnet communications scalability (growing number of subnets)
Ongoing firewall rule management

Resilience against malicious activity

Monitoring of node and network behavior

Dynamic load balancing

Caching

Canister addressing

o

DFINITY

IC Networking

Consensus

e Byzantine fault tolerance
e Random beacon

DFINITY Confidential: For Internal Use Only DFINITY

Following a canister call

Boundary /

Boundary

Boundary }

i Node

DFINITY Confidential: For Internal Use Only

i A
=] ==

DFINITY

Following a canister call

\

Boundary

Boundary

g Bo[\ﬁlnddary f—
- s ﬁ Execution Environment

Z i 1 Message Routing

ﬁ

{:} Consensus

Intra-Subnet P2P : p0 Networking

DFINITY Confidential: For Internal Use Only

DFINITY

Following a canister call

Boundary /

Boundary
Boundary }

g Node

DFINITY

DFINITY Confidential: For Internal Use Only

Requirements 1/2

* Bounded-time/eventual delivery despite Byzantine faults

Up to a certain maximum volume of valid artifacts that are not dropped by any honest node reaches all
honest nodes in bounded time/eventually despite attacks (under certain network assumptions).

* Reserved resources for different components/peers

Memory/bandwidth/CPU guarantees for different components and peers

* Prioritization for different artifacts

Not all artifacts are equal, different priorities depending on attributes (e.g., type, size, round,...). Priorities
change over time.

DFINITY Confidential: For Internal Use Only DFINITY

Requirements 2/2

* High efficiency
High throughput is more important than low latency

Avoid duplicates: don’t waste bandwidth downloading same artifact “too many times”

* DOS/SPAM resilience

Bad participants cannot prevent progress.

* Low accessibility requirements for users

Support browser and IPv4 access

DFINITY Confidential: For Internal Use Only DFINITY

Networking of the IC

e Geographically distributed: datacenters all over the world

Active Nodes
Boundary Nodes
== Upcoming Nodes

DFINITY Confidential: For Internal Use Only DFINITY

Networking of the IC

e Geographically distributed: datacenters all over the world

e Decentralized: a subnet is composed of nodes in different datacenters
— Some nodes in the same subnet may be very far apart
— Independent node providers with different skills and DC contracts
— Communication over public internet

m High latencies possible
m Many transient network failures

e Secure: a subnet should make progress even if up to %5 of the nodes are malicious / faulty
— We can't trust specific nodes (e.g., geographically close by)
— Even nodes in the same subnet should not trust each other

DFINITY Confidential: For Internal Use Only DFINITY

Xnet Inter-Subnet Networking

m Canisters on one subnet can send messages to canisters on other subnets, called
“cross-net communication” (or Xnet)

m Currently this is done quite naively, where any node on one subnet can fetch messages from any
other node on the other subnet with a HTTPS request

m We can probably improve this on several aspects:
o Scalability: decide which nodes connect to which

o Performance: leverage the fact that some nodes in both subnets are close to each other
(content is signed by the subnet, so we do not need to trust a specific node up to some extent)

DFINITY Confidential: For Internal Use Only DFINITY

Comparison with other Blockchain Systems

Layer-1 Performance Comparison

EJ] coincode

As of June:
> 20,000 TPS
> 2,000,000 QPS

¢ e Q A o0

Ethereum Cardano Solana Avalanche Algorand Internet Computer

Transaction Speed 15-20 TPS 2TPS 2,000-3,000 TPS 4,500 TPS 20 TPS 11,500 TPS
250,000 QPS

Transaction Finality 14 minutes 10-60 minutes 21-46 seconds 2-3 seconds 4-5 seconds 1 second
Scalability Not very Not very Not very Not very More Indefinite

scalable scalable scalable scalable scalability scalability
Node Count 6,000 nodes 3,173 nodes 1,603 nodes 1,243 nodes 1,997 nodes 443 nodes
Storage Costs $73,000,000/ GB Inadequate $1,000,000 / GB $988,000 / GB IPFS $5/GB

off-chain storage

Cloud Service 70% of nodes Un Most nodes ar | Most nodes Independent
Dependency run on AWS mé ud run on cloud run on cloud data centers

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

CO

DFINITY

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

Fast Growing Ecosystem

1
Toniq Labs DSCVR @Openchat 2 Plug (\g‘f)lc Rocks < NNS Dapp Motoko Playground

IThe Wall

{3 Uniswap Front End on the IC m{ Rise of the Magni @ Welcome Into the Metaverse

~ DISTRIKT O ORIGYN ® OPENCHAT INTERNET

IDENTITY

2 IC ROCKS

Pkt on the

e "block explorer” for the

built by the community.

#lnfrastructura

-~ CANLISTA © SUDOGRAPH

Plug into the
Internet Compt °

sonvatoy. @

#NNS

* REVERSI

NNS DAPP

sinfrastructure

#lnfrastructure #DeFi

4. DFINITY
EXPLORER

oo

Toniq Labs s th
markatplace, Stoic

#Dapp

& NNS
CALCULATOR

Intra-Subnet P2P Networking

m Peer-to-peer network of nodes
o Gossip protocol for artifact distribution

e Advert - Request - Response

o Eventual / bounded time delivery with priorities (~reliable broadcast optimized for Consensus)

m Untrusted communication
o TLS/ TCP to all nodes in the subnet, certificates in NNS
o Authenticity and integrity of artifacts can be verified by higher layers

o Nodes can still do evil

DFINITY Confidential: For Internal Use Only DFINITY

Example Subnet Dashboard

/ pjliw-kztyl-46ud4-ofrj6-nzkhm-3n4nt-wi3jt-ypmav-ijgkt-gjf66-uae > Application

1'152'712'600 Canisters
27444264 i
128.96 GB
12113
720

23.467TB

Cycle Burn Rate 626’988’ 1 88 Cycles/s

Finalization Rate 0.97 siocksis

Message Throughput 1 ’87798 Messages/s

O B e o A it e o B s A 4 e T T Tt £ A B o Lo e o o A s ' e %

DFINITY

Testnets

DFINITY-internal infrastructure

e Deploy complete IC instances in our 5 data centers (2 more in May)
o Chicago, San Francisco, Des Moines, Frankfurt, Zurich, ..

e \Variable size and VM capabilities
e (Can be used for experiments, metrics, correctness and performance tests

DFINITY

Logging

e Events can be logged in the code
e Log can be fetched from testnet machines
e Policy monitoring with MonPoly from Prof. Basin’s group

00

DFINITY

Case Study: “Idle” vs. Workload Traffic

31 nodes deployment

e 13in NNS
e 18 in Subnet 1

Workload generation
e onlyin Subnet 1

e 100 requests per sec
e 1kbeach

Conclusion
e |CP produces 0.1-0.2MBytes/s for
the protocol to make progress.

MBytes/sec per node

B without load [with load on Subnet 1

0.6

0.4

0.2

0.0
NNS Subnet 1

DFINITY

Case Study: “Intra DC” =

iperf between testnet hosts
e Chicago to San Francisco
e 60s in total

Conclusion
e Packet loss has a significant impact
on the achieved throughput.

= |Internet

CH1 -> SF1 TCP (Throughput/Retransmissions)

800

600
400
200

0

0 10 20 30 40 50

Mbit/s

Time [s]

CH1 -> SF1 TCP (CWND)

10

MBytes
o N = (o] [o2]

0 10 20 30 40 50

Time [s] x

DFINITY

More information

Infographic: here

Technical Library: here (videos of talks) and here (blogposts)

200,000,000 CHF Developer Grant Program here

e DFINITY SDK: here

CO

DFINITY

https://dfinity.org/icig.pdf
https://www.youtube.com/playlist?list=PLuhDt1vhGcrfHG_rnRKsqZO1jL_Pd970h
https://medium.com/dfinity/https-medium-com-dfinity-technology/home
https://dfinity.org/grants/
https://smartcontracts.org/docs/introduction/welcome.html

